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Abstract. Energy eigenvalues and order parameters are calculated by exact diagonalization for
the transverse Ising model on square lattices of up to 6 × 6 sites. Finite-size scaling is used to
estimate the critical parameters of the model, confirming universality with the three-dimensional
classical Ising model. Critical amplitudes are also estimated for both the energy gap and the
ground-state energy.

1. Introduction

Recent advances in computer technology have allowed the exact diagonalization of Ising-type
quantum spin systems of up to 36 sites in size. Schulz et al (1996), for example, studied the
J1-J2 XXZ Heisenberg spin model on square lattices with up to 6 × 6 sites. Our aim in this
paper is to carry out an exact diagonalization study of the transverse Ising model on the square
lattice, in order to estimate its critical parameters and study its finite-size scaling behaviour.

The transverse Ising model in (2 + 1)D is well known to be the quantum Hamiltonian
corresponding to the classical 3D Ising model (Suzuki 1976, Fradkin and Susskind 1978), and
exhibits a quantum phase transition in the same universality class as the classical 3D Ising
thermal transition. It was first studied by series expansion methods by Pfeuty and Elliott
(1971), and there have been several further series expansion calculations since then, both ‘low
temperature’ (Yanase et al 1976, Marland 1981, Oitmaa et al 1991) and ‘high temperature’
(Hamer and Irving 1984, Hamer and Guttmann 1989, He et al 1990). Exact finite-lattice
calculations have also been carried out previously (Roomany and Wyld 1980, Hamer 1983,
Henkel 1984, 1987) for square lattices of up to 5 × 5 sites, and similar calculations have also
been done for the triangular lattice (Hamer and Johnson 1986, Henkel 1990, Price et al 1993).
Here we extend these calculations for the first time to the 6 × 6 lattice, and use finite-size
scaling theory to obtain improved estimates of the critical point and critical index ν. Recently,
a density matrix renormalization group (DMRG) calculation has been carried out for this model
on lattices up to 30 × 6 sites in size by de Jongh and van Leeuwen (2000), but the accuracy of
these calculations is not yet sufficient to rival Monte Carlo simulations.

The finite-size scaling amplitudes at the critical point are also of interest. In (1 + 1)D,
it is well known that the theory of conformal invariance relates the scaling amplitudes to
fundamental parameters of the underlying effective field theory at the critical point, such as the
conformal anomaly and scaling indices. In higher dimensions, a similar scenario is known to
hold at ‘first-order’ transitions, where a continuous symmetry is spontaneously broken, giving
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rise to Goldstone bosons (Hasenfratz and Leutwyler 1990): the finite-size scaling amplitudes
are related to parameters of the Goldstone bosons such as the spin-wave stiffness and spin-
wave velocity. Does something similar apply at second-order transitions in higher dimensions?
Apart from a discussion by Cardy (1985), little has been done in this area. One peculiar result
was obtained by Henkel (1986, 1987) and Weston (1990), and confirmed recently by Weigel
and Janke (1999): the scaling amplitudes of the spin–spin and energy–energy correlation
lengths on antiperiodic lattices have a universal ratio

Aσ

Aε
= xσ

xε
(1.1)

where the xi are the scaling indices in the respective sectors. This phenomenon appears to
have no good theoretical explanation at the present time.

Our exact diagonalization methods are outlined briefly in section 2, and the numerical
results are presented in section 3. The critical parameters so obtained are compared with other
estimates in table 5 of section 4, and the critical amplitudes are also discussed there.

2. Method

The transverse Ising model on the square lattice has the Hamiltonian

H =
∑
i

(1 − σ3(i))− x
∑
〈ij〉

σ1(i)σ1(j)− h
∑
i

σ1(i) (2.1)

where the sum 〈ij〉 runs over nearest neighbour pairs on the lattice, and the σ matrices are
the usual Pauli spin operators acting on a 2-state spin-variable at each site. The coupling x
is analogous to an inverse ‘temperature’, and h represents an external ‘magnetic field’. We
shall employ a representation in which the σ3(i) are diagonal. Periodic boundary conditions
are assumed.

The unperturbed ground state of the model at x = 0 has all spins ‘up’, i.e. σ3(i) = +1, for
all i. The interaction term will induce an admixture of states with ‘flipped’ spins. The Hilbert
space of the model consists of two sectors, containing an odd and even number of flipped spins
respectively.

Exact diagonalizations have been carried out for L × L lattices, L = 1, . . . , 6. The
methods employed are fairly standard, for the most part, and will not be described in detail
here. First, a list of allowed basis states in the given sector was prepared, using the ‘sub-
lattice coding’ technique of Lin (1990). This efficient technique produces a sorted list of
states, requiring only one integer word of storage per state. Since only the zero-momentum
states are considered here, the states were ‘symmetrized’, that is, all copies of a given state
under translations, reflections and rotations were represented by a single state. Thus, for the
6 × 6 lattice in the even sector, the total number of ‘unsymmetrized’ states is approximately
235, whereas under symmetrization this is reduced by a factor of approximately 288, down to
119, 539, 680.

Next, the Hamiltonian matrix elements are generated, by applying the interaction operators
of equation (2.1) to each initial state, symmetrizing the resulting final state, and looking it
up in the master file. The elements were grouped into blocks, each of which acts between
small subsets of the initial- and final-state vectors, to avoid ‘thrashing’ during the matrix
multiplications. Within each subset, the initial and final addresses can each be fitted into a
half-integer, so that the matrix elements occupied 35 Gbyte of storage over all.

Finally, the lowest eigenvalue and eigenvector of the Hamiltonian were found in each
sector, using the conjugate gradient method. Nightingale et al (1993) showed that the conjugate
gradient method converges faster than the Lanczos method for large problems such as this. We
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found that the eigenvalue converged to an accuracy of one part in 1010 in 20–25 iterations for
the 6 × 6 lattice in the neighbourhood of the critical point.

Having determined the quantities of interest for each finite lattice, it is then necessary to
make an extrapolation toL → ∞, to estimate the bulk behaviour of the system. In the vicinity
of the critical point, the finite-lattice sequence will typically behave as

fL = f∞ + a1L
−ω1 + a2L

−ω2 + · · · (2.2)

where theωi are non-integer exponents, in general (Barber 1983). The problem of extrapolating
such a sequence has been discussed in several reviews (Barber and Hamer 1982, Smith and
Ford 1982, Guttmann 1989). We have employed a number of different algorithms, including:

(i) the Neville table (Guttmann 1989), which is best suited to a simple polynomial sequence,
with integer exponents ωi ;

(ii) the alternating VBS algorithm (van den Broeck and Schwartz 1979, Barber and Hamer
1982), which can give good convergence for sequences of type (2.2), but needs at least
two iterations to work well;

(iii) the Lubkin algorithm (1952), which is more suitable for short sequences;
(iv) the Bulirsch–Stoer (1964) algorithm, which has been applied in this context by Henkel

and Patkos (1987), and Henkel and Schütz (1988). This algorithm involves an explicit
parameter ω which can be optimized to match the leading power-law correction. It has
been claimed by Henkel and Schütz (1988) that the algorithm is more robust and more
accurate than the VBS algorithm, especially for short sequences.

3. Results

3.1. Finite-lattice data

The pseudo-critical point at lattice size L can be defined according to finite-size scaling theory
(Barber 1983) as the coupling xL such that

RL(xL) = 1 (3.1)

where RL(x) is the scaled energy-gap ratio

RL(x) = LFL(x)

(L− 1)FL−1(x)
(3.2)

and FL(x) is the energy gap for lattice size L. This point is found by calculating the energy
eigenvalues at a cluster of five equally spaced points in the neighbourhood of xL, and then
finding xL by interpolation between them. The spacing between the points was chosen as
�x = 0.001, estimated to balance the truncation and round-off errors in the calculation.
The values of all other observables can then be estimated at xL by the same finite-difference
interpolation procedures. Tables 1 and 2 list the pseudo-critical points xL, and the values of the
calculated observables at coupling xL for each pair of lattice sizesL and (L−1), forL = 2–6.
The values of xL forL = 2–5 listed in table 1 agree through to six figures with those calculated
previously (Hamer 1983).

Table 1 lists values for the ground-state energy per site ε0,L for lattice size L, and its
derivatives ε′

0,L and ε′′
0,L, where the prime denotes differentiation with respect to x. The values

are expected to be accurate to the figures quoted (or better) as regards round-off error. The
truncation error in the five-point interpolation process is harder to estimate, since it involves
unknown higher derivatives of ε0, but we estimate it should be no more than about one part in
1012 for ε0 and one part in 106 for ε′′

0 .
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Table 1. Finite-lattice data at the pseudo-critical points xL, calculated for the pair of lattice sites
L and (L− 1) in each case. The ground-state energy per site ε0, its first two derivatives ε′

0 and ε′′
0

with respect to x, and the susceptibility χ are given.

xL L ε0 ε′
0 ε′′

0 χ

0.260 342 382 22 1 −0.520 684 764 436 −2.000 000 00 0.000 00 −1.000 00
2 −0.074 060 535 180 −0.611 632 73 −2.908 81 −3.628 4

0.316 000 087 72 2 −0.112 709 188 696 −0.778 665 08 −3.069 19 −5.041 49
3 −0.070 818 161 984 −0.598 797 39 −4.151 19 −11.214 3

0.324 249 252 29 3 −0.075 901 188 836 −0.633 841 13 −4.343 70 −12.575 2
4 −0.066 430 308 096 −0.571 145 18 −5.099 31 −22.204 9

0.326 695 938 06 4 −0.067 843 120 636 −0.583 789 35 −5.236 41 −23.542 6
5 −0.064 637 823 298 −0.552 955 27 −5.833 24 −36.578 8

0.327 583 267 52 5 −0.065 130 784 765 −0.558 170 35 −5.921 35 —
6 −0.063 752 757 694 −0.540 125 09 −6.420 27 —

Table 2. Finite-lattice data as in table 1, consisting of the mass gap FL, its first two derivatives F ′
L

and F ′′
L with respect to x, and the ‘magnetization’ ML.

xL L FL F ′
L F ′′

L ML

0.260 342 382 22 1 2.000 000 000 000 0.000 0000 0.000 00 1.000 00
2 1.000 000 000 000 −3.400 7921 6.052 94 0.673 37

0.316 000 087 72 2 0.820 891 162 135 −3.022 3297 7.444 33 0.719 08
3 0.547 260 774 756 −4.469 5972 13.956 4 0.583 57

0.324 249 252 29 3 0.510 885 529 302 −4.347 0817 15.741 6 0.597 05
4 0.383 164 146 983 −5.408 8281 25.060 3 0.515 20

0.326 695 938 06 4 0.370 007 329 425 −5.345 2110 26.945 0 0.521 30
5 0.296 005 863 592 −6.233 7554 39.389 6 0.464 88

0.327 583 267 52 5 0.290 490 201 648 −6.198 0387 41.116 7 —
6 0.242 075 167 8 −6.985 0090 56.763 6 —

We have also listed values in table 1 for the magnetic susceptibility, defined by

χL = − 1

L2

∂2E0,L(x, h)

∂h2

∣∣∣∣
h=0

. (3.3)

This derivative was also estimated by a finite difference method, using a cluster of five data
points around h = 0, with a spacing �h = 0.0003, giving an estimated truncation error of no
more than one part in 106 in the susceptibility. This calculation was a little too large to carry
through for L = 6, with the facilities available.

Table 2 lists the energy gap FL between the odd and even sectors, and its derivatives F ′
L

and F ′′
L , at each xL. Values are also listed here for the quantity ML defined by

ML = 〈0|σ1(1)|1〉 (3.4)

where |0〉, |1〉 are the lowest lying energy eigenvectors in the even and odd sectors, respectively.
It can be shown (Yang 1952, Uzelac 1980, Hamer 1982) that this quantity converges towards
the spontaneous magnetization in the bulk limit. Unfortunately, for technical reasons, we were
again unable to calculate this quantity for L = 6. Since the accuracy of the wavefunction is
only the square root of that of the eigenvalue, the round-off error in these values is expected
to be about one part in 106.
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Figure 1. Graph of the finite-lattice pseudo-critical points xL as a function of 1/L4. The line is
merely to guide the eye.

3.2. Critical point

The sequence of pseudo-critical points xL converges rapidly, as can be seen in figure 1, where
xL is plotted against 1/L4. To estimate the bulk limit (L → ∞) of this sequence, we have
employed various algorithms discussed above, as well as a simple polynomial fit in 1/L4 and
higher powers.

Our final estimate of the critical point is

xc = 0.328 41(2). (3.5)

This is consistent with our earlier finite-size estimate of xc = 0.3289(10) (Hamer 1983), but
nearly two orders of magnitude more accurate. Henkel (1987) obtained an improved estimate
xc = 0.3282(1) from lattices with up to 5 × 5 sites.

3.3. Critical indices

Finite-size scaling theory (Barber 1983) also tells us how to estimate the critical indices for
the model. The finite-lattice susceptibility χL, for instance, is predicted to scale at the critical
point as

χL(xc) ∼ Lγ/ν L → ∞ (3.6)

and hence one finds that

L

(
1 − χL(xL)

χL−1(xL)

)
∼ −γ

ν
L → ∞. (3.7)

Similarly, ratios of the finite-lattice ‘magnetizations’ (equation (3.4)) give estimates of β/ν.
Finally, estimates of the index 1/ν can be obtained from the Callan–Symanzik ‘beta function’
(Barber 1983)

βL(x)/g = FL(x)

(FL(x)− 2xF ′
L(x))

(3.8)
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Table 3. Finite-size scaling estimates of the critical indices, as defined by equation (3.7) and the
text which followed, where L is the larger of the two lattice sizes used in the estimate.

L 1/ν 1 − α/ν β/ν γ /ν p

2 1.278 17 — 0.653 264 1.448 80 —
3 1.380 21 1.884 08 0.565 352 1.651 32 1.718 62
4 1.432 42 1.206 61 0.548 326 1.734 69 2.095 67
5 1.463 77 1.050 69 0.541 083 1.781 95 2.307 81
6 1.484 79 0.984 36 — — 2.420 47
∞ 1.591(2) 0.84(1) 0.523(2) 1.95(1) 2.8(2)

Table 4. ‘Logarithmic’ finite-size scaling estimates of the critical indices, as defined by
equation (3.12) and the text which followed, where L is the larger of the two lattice sizes used
in the estimate.

L 1/ν 1 − α/ν β/ν γ /ν p

2 — — — — —
3 1.520 02 2.439 01 0.514 989 1.971 78 4.836 867 09
4 1.541 05 1.248 04 0.512 493 1.976 42 4.168 378 15
5 1.552 26 1.057 15 0.513 266 1.974 79 3.855 246 95
6 1.559 37 0.982 87 — — 3.630 017 74
∞ 1.593(3) 0.84(1) 0.521(3) 1.96(1) 2.5(2)

via

L

(
1 − βL(xL)

βL−1(xL)

)
∼ 1

ν
L → ∞. (3.9)

One would expect to obtain estimates of the ratioα/ν in a similar fashion from the ‘specific
heat’

CL(x) = − x2

L2

∂2ε0

∂x2
(3.10)

but it is known (Hamer 1983) that these estimates are very poor; too high by a factor of
nearly 2. The reason is easily found: the ground-state energy or specific heat contains a
‘regular’ or analytic piece as well as the singular term (Privman and Fisher 1984). Henkel
(1987) has cleverly sidestepped this problem, using a transition amplitude to find α/ν, in
analogy to equation (3.4). Here, we eliminate the regular term by subtracting

ε′′
0,L − ε′′

0,L−1 ∼ Lα/ν−1 L → ∞ (3.11)

and using successive ratios of these differences to estimate 1−α/ν. The estimates so obtained
for the critical index ratios are listed in table 3.

Alternatively, ‘logarithmic’ estimates of the critical indices may be obtained as follows:
ln[χL(xL)/χL−1(xL)]

ln[L/(L− 1)]
∼ γ

ν
L → ∞. (3.12)

These alternative estimates are listed in table 4. The finite-size corrections are generally smaller
for the logarithmic estimates.

These finite-size estimates of the critical indices agree closely with the previous calculation
of Hamer (1983) up to L = 5; and, remarkably enough, most of them agree to within four
significant figures with the equivalent results obtained for the triangular lattice (Hamer and
Johnson 1986, Price et al 1993).

The same algorithms mentioned above have been employed to extrapolate these sequences
to their bulk limit. The sequences are very short, and may have slight irregularities, so that the
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Figure 2. Finite-lattice estimates of the index 1/ν plotted against 1/L. The solid circles are ‘linear’
estimates, the open circles are ‘logarithmic’ estimates. The lines are merely to guide the eye.

tabular algorithms are generally no more accurate than simple graphical methods or polynomial
fits in the extrapolation. The resulting estimates are listed at the foot of tables 3 and 4. The
errors in these estimates are inevitably rather subjective, but the variation between different
algorithms gives some indication of the likely error.

Figure 2 gives a graphical representation of the estimates of 1/ν from tables 3 and 4 as a
function of 1/L: it can be seen that the behaviour is almost precisely linear for the estimates
from table 3. Correspondingly, the Neville tables and polynomial fits give stable results, while
the Lubkin and Bulirsch–Stoer algorithms give less stable results, possibly a little higher. We
conclude that

1

ν
= 1.591(2). (3.13)

The estimates for α/ν are not quite so well behaved, but our final estimate is

α

ν
= 0.16(1). (3.14)

This is a much better result than can be obtained directly from the specific heat, equation (3.10).
The estimates for the other indices β/ν and γ /ν are rapidly convergent, but we only have

data up to L = 5 which were known previously. We find

β

ν
= 0.522(2) (3.15)

γ

ν
= 1.96(1). (3.16)

3.4. Energy amplitudes

The finite-size behaviour of the energy gap at the critical point is

FL(xL) ∼ A1

L
L → ∞ (3.17)
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Figure 3. The energy gap amplitude A1,L plotted against 1/L2.

so the amplitude A1 can be estimated by

LFL(xL) ∼ A1 L → ∞. (3.18)

The sequence of estimates for A1 is shown in figure 3. It extrapolates to a value

A1 = 1.39(1). (3.19)

A value of 1.42 was previously estimated by Henkel (1987).
The finite-size scaling behaviour of the ground-state energy per site ε0 at the pseudo-

critical point is shown in figure 4. The finite-size scaling corrections appear to decrease as
1/L3, in accordance with the Privman–Fisher (1984) scaling hypothesis, which states that the
singular part of the free-energy density of a system of finite size L should scale as L−d (here
d = 3). A polynomial fit on this assumption gives

ε0,L(xL) ∼ ε∗
0 − A0

L3
L → ∞ (3.20)

with

ε∗
0 = −0.624(1) (3.21)

and

A0 = 0.38(5). (3.22)

Further evidence for this power-law behaviour can be obtained as follows. Suppose

ε0,L(xL) ∼ ε∗
0 − A0/L

p L → ∞ (3.23)

then

L

[
1 − (ε0,L(xL)− ε0,L−1(xL))

(ε0,L−1(xL−1)− ε0,L−2(xL−1))

]
≡ pL ∼ p as L → ∞ (3.24)

and

ln

[
ε0,L(xL)− ε0,L−1(xL)

ε0,L−1(xL−1)− ε0,L−2(xL−1)

]/
ln

[
L

L− 1

]
∼ −p as L → ∞. (3.25)
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Figure 4. The ground-state energy per site at lattice size L plotted against 1/L3.

Figure 5. The effective exponent pL plotted against 1/L.

The sequences of finite lattice estimates for p are shown in figure 5. It can be seen that the
‘linear’ sequence comes down towards three from above, whilst the ‘logarithmic’ sequence
comes up towards three from below. The sequences are a little irregular, however, and the best
estimate we can obtain for the bulk limit is

p = 2.8(2), (3.26)

a little lower than, but still consistent with, 3.
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Figure 6. The Casimir amplitude A0,L plotted against 1/L.

Assuming that p = 3, the scaling amplitude A0 for the ground-state energy can be found
by

L4

3
(ε0,L(xL)− ε0,L−1(xL)) ∼ A0 L → ∞. (3.27)

The sequence of estimates for A0 is plotted in figure 6 and extrapolates to a value

A0 = 0.35(2) (3.28)

which is in reasonable agreement with equation (3.22). Henkel (1987) previously obtained an
estimate of 0.39 for this quantity (allowing for the different normalization of his Hamiltonian).
Mon (1985) obtained a Monte Carlo estimate of the corresponding free-energy amplitude in
the 3D classical model.

In order to calibrate this result, we need to know the ‘speed of light’ v, or in other words
the scale factor needed in this model to make the long-range correlations isotropic in space
and time at the critical point. We have attempted to estimate this using the dispersion relation
for the lowest excited state at the critical point, expected to be of the form

E(k) = vk (3.29)

in the bulk system. We have calculated the finite-lattice eigenvalues for low-lying excited
states with non-zero momentum for lattice sizes L = 2–5, and set

vL = L

2π

(
FL

(
xL,

2π

L

)
− FL(xL, 0)

)
∼ v L → ∞ (3.30)

where FL(x, k) is the energy at coupling x for momentum k. Figure 7 shows the sequence of
finite-lattice estimates for v as a function of 1/L. They extrapolate to a bulk value

v = 0.99(3). (3.31)

The ratio A0/v should be a universal number, independent of the normalization of the
Hamiltonian. From the results above, we find

A0

v
= 0.35(2) (3.32)
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Figure 7. Finite-lattice estimates of the ‘speed of light’ v plotted against 1/L.

which can be compared with values of 0.719 expected according to effective field theory for
a single free boson (Hasenfratz and Niedermayer 1993), or 0.211 for a single free fermion
degree of freedom (appendix). The result (3.31) matches neither of these values. This is not
surprising, since the effective field theory at the critical point is expected to be a non-trivial
interacting theory. It might be possible to estimate this quantity via the ε-expansion, using a
Landau–Ginzburg effective field theory. This has not yet been done, as far as we are aware.

4. Conclusions

We have calculated the lowest-lying energy eigenvalues of the transverse Ising model on the
square lattice with periodic boundary conditions for lattice sizes with up to 6 × 6 sites, using
the conjugate gradient method. Finite-size scaling theory has been employed to estimate the
critical parameters, which are compared with previous estimates in table 5.

It can be seen that our present estimates agree well with earlier finite-size scaling results.
We have achieved a substantial increase in accuracy for the critical point, but only a more
modest increase for the critical index ν. The results appear very compatible with previous
series analyses, and also with recent estimates for the classical 3D Ising model and field theory.
This provides further confirmation of the universality between these transitions. Finally, it can
be seen that the accuracy of the exponents for the quantum model is now not very far behind
that for the classical model.

We have also estimated the finite-size scaling amplitudes for the energy eigenvalues at the
critical point. For the spin gap we find

A1 = 1.39(1) (4.1)

which can be compared with a previous estimate by Henkel (1987) of A1 = 1.42.
For the ground-state energy, we have presented evidence that

ε0,L(xL) ∼ ε∗
0 − A0

L3
L → ∞ (4.2)
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Table 5. A comparison of critical parameters obtained in this paper with some others obtained
elsewhere. Key: HT = high-temperature series; LT = low-temperature series; FS = finite-size
scaling; MC = Monte Carlo; TR = triangular lattice; SQ = square lattice.

ν α β γ xc

(2 + 1)-dimensional Ising model
FS SQ Hamer (1983) 0.635(5) 0.328 9(10)
FS SQ Henkel (1984, 1987) 0.629(2) 0.11(1) 0.324(9) — 0.328 2(1)
FS SQ This work 0.629(1) 0.10(1) 0.328(2) 1.23(1) 0.328 41(2)
FS TR Hamer and Johnson (1986) 0.627(4) — 0.332(6) 1.236(8)
FS TR Price et al (1993) 0.627(2) 0.12(2) 0.324(3) 1.23(1)
HT SQ He et al (1990) 0.637(4) 0.11(2) 1.244(4) 0.328 51(8)
LT SQ Oitmaa et al (1991) 0.64(3) 0.096(6) 0.318(4) 1.25(2)

Three-dimensional Ising model
HT BCC Butera and Comi (1997) 0.6308(5) 1.2384(6)
MC Hasenbusch (1999) 0.6296(3)(4) 1.2367(11)

Field theory
Guida and Zinn-Justin (1998) 0.6304(13) 0.109(4) 0.3258(14) 1.2396(13)

and have estimated

A0 = 0.35(2) (4.3)

which can be compared with a previous estimate of 0.39 by Henkel (1987). It should be
possible to predict this amplitude from Landau–Ginzburg effective field theory.

We have chosen to extrapolate finite-lattice sequences calculated from observables at the
pseudo-critical point for each lattice pair. This technique has the advantage that it is ‘unbiased’,
in that it does not depend on the final estimate of the bulk critical point. An alternative approach
is to calculate all quantities at the estimated bulk critical point, and extrapolate those sequences
instead. This has been advocated by de Quieroz (1995), for example, who claims an order
of magnitude improvement in accuracy using this technique. We found no great increase in
accuracy using the technique in the present case.

An extension to 7 × 7 sites of these exact diagonalization calculations is hardly feasible
at the present time, but there are some very precise approximate methods now available, such
as the DMRG (White 1992, de Jongh and van Leeuwen 2000) and path integral Monte Carlo
techniques (Sandvik 1992). These might well be able to extend the results to larger lattice
sizes, and allow much-improved finite-size scaling estimates of the critical parameters. They
could also confirm whether or not the Casimir energy scales as in equation (4.2). Our exact
diagonalization results should provide a useful calibration for such studies. We look forward
to seeing such calculations in the future.

We have chosen here to work on the square lattice, rather than the triangular one, because
the Hamiltonian matrix is somewhat smaller and the leading finite-size corrections are expected
to be much the same for both lattices. There are, however, some hints of irregularity or
alternating behaviour in some of the square lattice sequences. It might well be that the triangular
lattice results are smoother.
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Appendix

The finite-size scaling amplitude for the ground-state energy (Casimir amplitude) can be
calculated for free fields as follows.

A.1. Free-boson case

The zero-point energy of a free-boson field is given in d space dimensions by

E0 = 1
2

∑
k

ωk (A.1)

i.e. ωk/2 for each momentum mode. On a lattice, the free-particle Hamiltonian can be written
in a finite-difference form

H = 1

2

∑
n

[
φ̇2(n) +

d∑
i=1

(
φ(n + i)− φ(n − i)

2

)2
]

(A.2)

where the lattice spacing has been set to 1. The eigenmodes are plane waves

φ(n, t) = 1

N1/2

∑
k

[ake
i(k·n−ωkt) + a†

ke−i(k·n−ωkt)] (A.3)

where

ωk =
[

2
d∑
i=1

(1 − cos ki)

]1/2

(A.4)

and for periodic boundary conditions the allowed momenta are

ki = 2π

L
li li = 0, 1, 2, . . . (A.5)

for a lattice of N = Ld sites. Hence

E0 = 1
2

∑
k

[
2

d∑
i=1

(1 − cos ki)

]1/2

(A.6)

i.e.

ε0 = 1

Ld

L−1∑
{li }=0

[ d∑
i=1

sin2

(
πli

L

)]1/2

. (A.7)

Now the leading finite-size correction to this sum arises from the infrared (small momentum)
behaviour of the lattice sum (Hasenfratz and Leutwyler 1990), and does not depend on the
cutoff or regularization at large momentum. Thus we may approximate for our purposes

ε0 � 1

Ld

∞∑
{li }=−∞

[ d∑
i=1

(
πli

L

)2]1/2

. (A.8)
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Now we use the Poisson resummation formula
+∞∑

m=−∞
f (mL) = 1

Ld

+∞∑
n=−∞

g

(
2πn

L

)
(A.9)

with

g(k) =
∫ +∞

−∞
eik·xf (x) ddx (A.10)

to show

ε′
0 = 1

4π

+∞∑
{mi }′=−∞

∫ ∞

0
kd dk

Jd/2−1(kx)

(2πkx)d/2−1
(x = L|m|) (A.11)

= − +(d+1
2 )

2π
d+1

2 Ld+1

+∞∑
{mi }′=−∞

1

|m|d+1
. (A.12)

The dash here implies removal of the term m = 0, which corresponds to the (infinite,
non-universal) bulk ground-state energy per site, which we simply drop.

The sum involved here is a generalization of the Riemann zeta function. It gives

ε′
0 = − A0

Ld+1
(A.13)

where for d = 1, A0 is easily evaluated

A0 = π

6
= 0.5236, (A.14)

the result being familiar from conformal field theory. For higher dimensions, we have evaluated
the sum numerically

d = 2 : A0 = 0.7189 (A.15)

d = 3 : A0 = 0.8375. (A.16)

The result for d = 2 was given previously by Hasenfratz and Niedermayer (1993).

A.2. Free-fermion case

A similar naive argument can be given for the case of a single species of free Weyl (spinless)
fermions. The filled Dirac sea has energy

E0 = −
∑
k

ωk (A.17)

where again

ωk =
[

2
d∑
i=1

(1 − cos ki)

]1/2

(A.18)

and we assume antiperiodic boundary conditions for the fermions

ki = π

L
(2li + 1) li = 0, 1, 2, . . . . (A.19)

Hence

ε0 � − 1

Ld

∞∑
{li }=−∞

[ d∑
i=1

(
π(2li + 1)

2L

)2]1/2

. (A.20)
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We use the Poisson resummation formula again to find

ε′
0 = − 1

4π

+∞∑
{mi }′=−∞

(−1)
∑

i mi

∫ ∞

0
kd dk

Jd/2−1(kx)

(2πkx)d/2−1
(x = L|m|) (A.21)

= +(d+1
2 )

2π
d+1

2 Ld+1

+∞∑
{mi }′=−∞

(−1)
∑

i mi

|m|d+1
. (A.22)

For d = 1, A0 is easily evaluated to give

A0 = π

12
= 0.2618 (A.23)

which is also familiar from conformal field theory; while for higher dimensions, we find
numerically

d = 2 : A0 = 0.2106 (A.24)

d = 3 : A0 = 0.1957. (A.25)

These numbers have not been obtained previously, as far as we are aware.
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